Noticias de Matemáticas

Loading...

domingo, 20 de julio de 2014

Si quieres saber algo, búscalo en Pi. En Pi está todo


Resulta muy emocionante pensar que en dentro del número PI está todo, sólo hay que saber burcarlo.

Todos sabemos, desde el colegio, que Pi es un número con muchas cifras decimales sin periodos (pi es un número irracional). Muchos mátemáticos, desde Arquímedes, se han preocupado de hallar cada vez más decimales del número pi. Hoy en día, gracias a los ordenadores, ya se pueden conocer millones y millones de cifras del número pi.

Cabría pensar que si el número pi es una cadena muy muy larga de números que aparentemente no siguen ningún patrón, aparecerán en él, tarde o temprano, cualquier subcadena de númreos. Por ejemplo, me puedo preguntar ¿mi fecha de cumpleaños, o mi número de móvil estarán dentro del número Pi?. Incluso, ¿podríamos aventurar que si buscamos una codificación de El Quijote completo (ver entrada anterior) la acabaríamos encontrando dentro del número Pi?

El resultado que afirma que dentro del número Pi se puede enconrar cualquier subcadena, aún no está demostrado. Pero parece bastante plausible.

Aunque el resutado no esté probado matemáticamente, sí que hay una aplicación informática en la web que permite encotrar cadanas de números dentro de la expresión decimal del número pi.

Por ejemplo, mi edad que es ahora 55 años aparece por primera vez a partir del dígito 130º.

En esta dirección web puedes buscar cadenas de números dentro de las cifras del número PI.
También encontrarás interesantes informaciones sobre el número PI.



Propuesta pedagógica

Investigar la fecuencia relativa de las 10 cifras en la expresión decimal del número Pi. ¿Puede considerarse que se distrubuyen de manera aleatoria?

El saber no ocupa lugar : Toda la Biblioteca Nacional cabe en un punto


Cada una de las letras mayúsculas y minúsculas, los sespacios en blanco y los sígnos de puntuación los podemos identificas fácilmente con un número de tres cifras mediante un código. De este modo, cualquier libro, como El Quijote, podría reducirse a una lista muy larga, pero finita, de números.  Incluso las ilustraciones las podemos identificar también con una serie de números como hacen las fotografías digitales.

Ahora nos podemos imaginar que, no sólo un libro, sino todos los libros de la Biblioteca Nacional, unos detrás de otros, forman una cadena muy larga de números. Aún podríamos imaginar que añadimos a nuestra cadena de números todos los libros que se han escrito en todo el mundo desde que se inventó la imprenta.

Si consideramos el número real dle intervalo [0, 1] cuuya expresión decimal es un cero, una coma, y después la serie de números que representa todos los libros de la Humanidad, tendríamos identificado un solo punto del segmento unidad.

Así pues, toda la información contenida en todos los libros de la Biblioteca Nacional cabe en un sólo punto (sin largo, ni ancho, ni alto). En efecto, "EL SABER NO OCUPA LUGAR"


Un ejemplo de problema de matemáticas laboriosas


Uno de los peligros que tiene enseñar matemáticas, sólo para preparar exámenes, es que se rehuyen los cálculos laboriosos.  La capacidad  de las matemáticas para modelizar situaciones concretas es la base de su aplicación práctica a la tecnología. Sería bueno presentar a los alumnos de secundaria algunos ejemplos de este tipo de situaciones. 

 El diseño de un puente


Para formar el arco inferior de un puente, como el de la figura, que une las dos orillas de un río, se elige una parábola. Se dan las posiciones de arranque del arco en ambas orillas, la altura de paso en medio del río y la altura de la calzada sobre el apoyo izquierdo. Hallar las longitudes de las barras verticales.

 Solución 

La ecuación ajustada de la parábola es:  y = 0,22264 x - 0,0022929 x^2

El vértice de la parábola es el punto (48,550, 5,405)

Las longitudes de las vigas verticales son:

5.003 m
3,464 m
2,385 m
1,763 m
1,600 m
1,896 m
2,650, m
3,864 m
5,347 m
7,665 m
10,254 m
13,301 m

Resulta interesante ayudrse de una hoja de cálculo.


[Fuente: Matemáticas para ingenieros. Bauch, Dreyer, Haacke. Ed Urmo 1970. Es trsducción de un libro alemán]

viernes, 18 de julio de 2014

La aventura del saber (Rtve). El espacio de Matemáticas de Guadalupe Catellano


Dentro del programa LA AVENTURA DEL SABER de Rtve hay un espacio dedicado a las Matemáticas en las que la profesora Guadalupe Catellano acerca las ideas matemáticas.

En eel canal de Youtube del programa puedes ver los vídeos.


Dibujar una elipse doblando papel (Dibujar curvas usando rectas)


Iniciamos con esta entrada una serie que podemos titular: Dibujando curvas a base de rectas.

En este caso, vamos a dibujar una elipse como la envolvente de una serie de rectas que obtenemos doblando papel.



Procedimiento

En un circulo de papel señalamos un punto interior, P. Doblando el papel, marcamos diferentes cuerdas de la circunferencia de modo que al doblar el papel por la cuerda resulte que la circunferencia pase por el punto interior P. (Ver vídeo).

La envolvente de todas las cuerdas es una elipse que tiene por focos el punto interior P y el centro de la circunferencia, C.

Justificación

Para la justificación del procedimiento hay que recordar:

Definición de elipse como lugar geométrico
Una elipse es el lugar geomérico de los puntos tales que la suma de las distancias a los dos focos es una coanstante

d(X, F1) + d(X, F2) = k (cte)

Propiedad de reflexión 
 Los radios vectores de un punto de la elipse forman ángulos iguales con la tangente a la elipse en ese punto




 La circunferencia que tiene por centro uno de los focos de la circunferencia y de radio la connstante, 2a,  de la elipse,  recibe el nombre de CIRCUNFERENCA FOCAL.

El resultao que acabamos de demostrar sirve para dar otra definición de la elipse como lugar geométrico:

Una elipse es el lugar geométrico de los puntos tales que la uma de distancias a un punto (uno de los focos) y a una circunferencia (circunferencia focal con centro en el otro foco) es una constante.

Aplicación didáctica

Esta construcción puede ser el origen de la construcción de importantes resultados.

1º X es un punto de la elipse que tiene por centros P y C
2º La cuerda m es la tangente a la elipse en el punto X
3º Propiedad de reflexión de la elipse. La tangente es la bisectriz exterior de los radios vectores.

En estos apuntes manuscritos se puede ver el desarrrollo formal



 Para ampliar


[Fuente: Matemáticas 2º de BUP. Guzmán y Colera. Ed. Anaya]

martes, 15 de julio de 2014